

Maca — a configurable tool to Maca — a configurable tool to
integrate Polish morphological dataintegrate Polish morphological data

Adam Radziszewski
Tomasz Śniatowski

Wrocław University of Technology

OutlineOutline

● Morphological resources for Polish
● Tagset and segmentation differences
● Requirements
● Our solution
● Usage scenarios
● Summary

IntroductionIntroduction

● Morphological analysis: assigning morphological
descriptions to tokens

● Token set of (→ MSD tag, lemma) pairs
● MSD — morphosyntactic description tag

● Part-of-Speech / grammatical class
● Values of inflectional and syntactic attributes, e.g. case

Example: analysis of the form myśl

myśl subst:sg:nom:f thought

myśleć impt:sg:imperf think!

Morphological resources for PolishMorphological resources for Polish

IPI PAN Corpus tagset Morfologik tagset

Ana ly se r : Mor f eusz S IAT
Large dictionary

Data by recognised Polish linguists
Very restrictive licence

Ana ly se r : Mor fo log ik
Large dictionary (3.5 mln forms)

Data from ispell/myspell
GNU LGPL or CC BY-SA

Corpus : IP I PAN (f ragment)
660 000 tokens manually annot'd

84 000 different forms
GNU GPL *Free: src available

There are more non- f ree analysers
& corpora with various tagsets

Morphological resources for Polish (2)Morphological resources for Polish (2)

● Important to have corpus and analyser in the same tagset
● Corpus usually too small to obtain reliable lexical model
● POS/MSD taggers for Polish rely on external analysers
● Goal: to integrate corpus morphological data with available

analysers

● Important to be able to modify an existing dictionary
● Correct erroneous entries
● Extend
● Supersede entries with domain-specific terminology
● Integrate multiple dictionaries

Tagset differencesTagset differences

● Traditional Parts-of-Speech (nouns, pronouns, verbs…)
● Non-free analysers, e.g. POLEX PMDBF
● Partially Morfologik

● PoS classes based on inflectional properties
● Morfeusz / IPI PAN Corpus, partially Morfologik
● Each class assigned a set of attributes whose values must be

given
● If some subset of a PoS not specified for an attribute, should

constitute a separate class
● Moja (my-fem-sg) inflects as adjective, thus labelled so
● Jasno (light) is gradable adverb; → dziś (today) is not particle→

Segmentation differencesSegmentation differences

● When attaching MSD tags, we need to know what kind of
units (tokens) we want to account for

● Traditionally, strings of letters cut by punctuation and
white spaces (Morfologik, POLEX PMDBF)

● Morfeusz: some verb forms are split into parts
● Miałem (I had masc) → miał (sing. masc.) + em (sing. 1 person)

● Miałbym (I'd have masc) → miał (sg. masc.) + by (conj.part.) + m (sg. 1 person)

● Motivation: occasional scrambling gdyby+m miał (If I had masc)
● Seg. ambiguities: miałem is also a noun in instr. case (dust)
● Morfeusz outputs graphs

miałem
miał em

Requirements (functional)Requirements (functional)

● Integrate available morphological data under different
settings, providing multiple configurations

● Select analysers to use at the moment
● Be able to use Morfeusz until enough free data available
● Support overriding entries and extending dictionaries
● Tight coupling with tokeniser

● Take advantage of knowing token type (numbers, words, punct.)
● Tie different analysis pipelines to different token types

● Handle some differences in tagsets and seg. strategies
● Handle large dictionaries efficiently (transducers)

Requirements (technical)Requirements (technical)

● Whole functionality as command-line tools and C/C++ library for use
in NLP software
● Performance, low start-up time (no VM)
● Easy integration with Python and C++

● Re-usability
● Division into libraries wrt. functionality (I/O, tokeniser, analyser)
● Useful command-line tools also serving as library API usage examples

● Supporting standards and available resources
● SRX — segmentation rule exchange format for MT systems
● Unicode (using ICU library)
● SFST transducers
● Support for Morfeusz data (graphs) and XCES XML format (IPI PAN Corpus)

Our solution: MACA systemOur solution: MACA system

Tok i — conf i gurab le token i se r
Running text  seq of tokens
or sentences containing tokens

Token i sa t ion ru le s defined in IN I f i l e s
May point to SRX f i l e (sentence splitting rules)

Running
text

Token
Orth: Aaa
Label: w

Space before: newlines

Token
Orth: .
Label: p

Space before: none

SRX rules
for Polish

(by Miłkowski)

MACA — Morpho log i ca l Ana ly s i s
Conver te r and Aggregator

Toki tokens  seq of corpus2 tokens
Analyser configs defined in IN I f i l e s

Tagset conversion routines as IN I f i l e s
May point to SFST transducers, Morfeusz, txt files
Define analyser pipelines and use Toki labels

corpus2 library
Data structs

Corpus XML I/O
Tags, tagsets

Usage scenarios (1)Usage scenarios (1)

● Compiling working analyser from existing data
● Use one of the provided Toki config or tailor a specific one
● Compile a text file with dictionary into SFST format
● Simple Maca config: attaches fixed tags to punctuation and digits,

the compiled SFST transducer to the rest
● Practical usage in another project: converted Morfologik data into

the IPIC tagset; resulting in free replacement of Morfeusz

● Using and patching Morfeusz
● Morfeusz is a library + rudimentary utility to pose queries
● Morfeusz + Maca is able to analyse running text or XML files
● When seg. ambiguity encountered, warns and selects shortest path

Usage scenarios (2)Usage scenarios (2)

● Simple tag/segmentation conversions
● Serious tagset conversion is better performed off-line
● MACA: mapping rules, conditional token joining and splitting
● Differences in attribute value sets across corpus versions
● Reducing a tagset to PoS-only tags
● Reducing ambiguity in Morfeusz output: conversion routines

may be applied to graph paths separately before joining

miałem
miał em

miałem

miał em

miałem
miałem

SummarySummary

● A working system, bundled with practical configs & data
● C++ framework to build NLP applications on
● Released under GNU GPL 3.0 at

http://nlp.pwr.wroc.pl/redmine/projects/libpltagger
● First open-source C/C++ SRX implementation
● Further work:

● Python wrappers
● Support additional corpus formats
● Support MULTEXT-EAST tag string representation
● Test for other languages

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

